Page 78 - 068
P. 78

64



                       where   B      B     B .  By  the  properties  of  Brownian  motion  (independent  and
                                 t  t  t  t  t i
                                 i
                                         i
                                                               d              d
                       identically increment)  B    B     B  B        B     tB  where  B is standard
                                                                     
                                             t  t  t  t  t    t  t t   t      1         1
                                              i       i       i   i    i
                                           0,1 .
                       normal distribution N  
                            For  the  model  with  jumps,  we  also  discretize  the  model  in  Eq.  (4)  and  use  similar

                       computation as above. Then, we also have the today price at t 
                                                                               t
                                                                                i
                                                                       2       N t i    
                                                                                t 
                                                               S  S  exp        t      B   Y
                                                                                         
                                                   t    0                i            i
                                                   i                 2          i
                                                                                i 1    
                       and the next day price at t   t    is
                                                      t
                                                 i
                                                                       2                N t  t    
                                                                                              i
                                                                                           
                                                           S    S  exp        t     t     B  t  Y .
                                                                                                   
                                                 t  t  0          2    i           t         i
                                                 i
                                                                                       i
                                                                                          i 1    
                       Then also the return can be obtained by
                                                                       2                 N t  t    
                                                                                               i
                                                                                            
                                                       S  exp            t     t      B  t   Y  
                                               S         0          2     i        t     i 1  i    
                                                                                        i
                                                        t  t                                       .
                                                 i
                                                 S                         2          N t i  
                                                                                      t 
                                                  t i                                         
                                                             S  exp           t     B   Y  
                                                              0            2   i      i       i
                                                                                      i 1    
                       We again apply the mathematical manipulation and the property of exponential function. Then

                                     S                   2                           N t  t  N t i    
                                                                                               i 
                                                                                           i
                                       t  t                                     
                                       i     exp          t    exp  B    B  exp    Y   Y  
                                       S               2            t  t   t i                 i 
                                                                         i
                                        t                                               i  1  i  1  
                                        i
                                     .
                         N t  t  N t i   N t  t
                           i
                                            i
                       As     Y   i  Y   i    Y , then we get
                                                i
                          i 1    i 1    i N  1
                                           
                                             i t
                                                                   2            N t  t    
                                                                                      i
                                                                           
                                                    S  S  exp         t    B      Y                 (7)
                                                                                            
                                            t  t  t                       t  t       i
                                             i       i          2           i            
                                                                                   i N    t i  1  
                       where N    N      and N     has Poisson distribution with parameter  .
                                                                                         t
                               t i   t  t    t  t
                                                i
                                     i
                            We will simulate the USS price by using Eq. (6) and Eq. (7) and all parameters will be
                       estimate from the historical data of the USS price. To estimate the parameters of the continuous
   73   74   75   76   77   78   79   80   81   82   83