Page 79 - 068
P. 79

65



                       model we consider from the Eq. (6). The first assumption for this model is log return required to
                       be Gaussian distribution this means


                                                  S                   2              
                                                                t  t    exp        t    B    .
                                                                               
                                                    i
                                                    S               2           t  t 
                                                                                   i
                                                     t i                             
                       Take the logarithm both sides and we get
                                                  S              2             
                                                    ln   t  t            t    B    .
                                                                            
                                                    i
                                                  S           2           t  t
                                                                                i
                                                   t i                           
                                         S   
                            Let  R   ln   t  t     represent the log return of asset price as in Eq. (1), then we apply
                                          i
                                         S   
                                          t i 
                       the property of expectation and Brownian motion and we have

                                                             2                     2
                                               E R      E            t    B                t  .
                                                                     
                                           
                                                           2          t  t        2  
                                                                         i
                       If  there  are  n observations  of  the  log  return  (R  ,...,R )  by  the  law  of  large  number  the
                                                                   1     n
                       expectation of the log return can be estimated as

                                                                 1
                                                                    n
                                                                     E R      n   R .
                                                           
                                                           
                                                                        i
                       Therefore, parameter   can be estimated by    i 1
                                                        1  n             2
                                                            R          t 
                                                       n  i 1  i      2    

                                                                     n
                                                                  1   R
                                                                  n     i    2
                                                                                 i 1    .                                (8)
                                                                      t     2

                       For estimating   , we consider the variance of the log return  R with the property of variance
                       and Brownian motion and then we obtain


                                                                            2           
                                                              Var R      Var        t    B  
                                                                                    
                                                                         2         t  t    
                                                                                        i
                                                                                t .
                                                                   2
                       The usual estimation for the variance is
   74   75   76   77   78   79   80   81   82   83   84