Page 76 - 068
P. 76
62
Now we will solve (3) by applying proposition 3.1 with f t ,S t ln S by (a). When
t
the parameters and are constant and is fixed then
=a S , = σS , X = y 1 S
b
t t t t i t t
f f 1 2 f 1
,t S , ,t S , =- .
0
t t S t S S 2 S 2
t t t t
We substitute all into (a)
ln S t 0 1 S ds 1 t 2 S 2 1 ds
ln S
t 0 s s 2
0 S s 2 0 S s
t 1 N t
s
S dB ln S y 1 S ln S t
0 s S s i 1 t t t
S t 1 t t N t S y 1 S
s
ds
ln t 2 ds dB ln t t t
S 0 0 2 0 0 i 1 S t
S 1 N t
ln t (t 0) 2 (t 0) B B ln y
t 0 t
S 0 2 i 1
S 1 N t
t
ln S t 0 2 2 t B i 1 ln y t
S 1 N t
t
exp ln t exp 2 t B ln y
S 2 t
0 i 1
1 N t
t
S S exp 2 t B ln y .
t 0 t
2 i 1
Hence,
1 N t
t
S S exp 2 t B Y (4)
t 0 i
2 i 1